3.3.12 \(\int \frac {(A+B x) (b x+c x^2)^{3/2}}{x^{13/2}} \, dx\) [212]

3.3.12.1 Optimal result
3.3.12.2 Mathematica [A] (verified)
3.3.12.3 Rubi [A] (verified)
3.3.12.4 Maple [A] (verified)
3.3.12.5 Fricas [A] (verification not implemented)
3.3.12.6 Sympy [F]
3.3.12.7 Maxima [F]
3.3.12.8 Giac [A] (verification not implemented)
3.3.12.9 Mupad [F(-1)]

3.3.12.1 Optimal result

Integrand size = 24, antiderivative size = 179 \[ \int \frac {(A+B x) \left (b x+c x^2\right )^{3/2}}{x^{13/2}} \, dx=-\frac {c (8 b B-3 A c) \sqrt {b x+c x^2}}{32 b x^{5/2}}-\frac {c^2 (8 b B-3 A c) \sqrt {b x+c x^2}}{64 b^2 x^{3/2}}-\frac {(8 b B-3 A c) \left (b x+c x^2\right )^{3/2}}{24 b x^{9/2}}-\frac {A \left (b x+c x^2\right )^{5/2}}{4 b x^{13/2}}+\frac {c^3 (8 b B-3 A c) \text {arctanh}\left (\frac {\sqrt {b x+c x^2}}{\sqrt {b} \sqrt {x}}\right )}{64 b^{5/2}} \]

output
-1/24*(-3*A*c+8*B*b)*(c*x^2+b*x)^(3/2)/b/x^(9/2)-1/4*A*(c*x^2+b*x)^(5/2)/b 
/x^(13/2)+1/64*c^3*(-3*A*c+8*B*b)*arctanh((c*x^2+b*x)^(1/2)/b^(1/2)/x^(1/2 
))/b^(5/2)-1/32*c*(-3*A*c+8*B*b)*(c*x^2+b*x)^(1/2)/b/x^(5/2)-1/64*c^2*(-3* 
A*c+8*B*b)*(c*x^2+b*x)^(1/2)/b^2/x^(3/2)
 
3.3.12.2 Mathematica [A] (verified)

Time = 0.25 (sec) , antiderivative size = 140, normalized size of antiderivative = 0.78 \[ \int \frac {(A+B x) \left (b x+c x^2\right )^{3/2}}{x^{13/2}} \, dx=-\frac {\sqrt {x (b+c x)} \left (\sqrt {b} \sqrt {b+c x} \left (8 b B x \left (8 b^2+14 b c x+3 c^2 x^2\right )+A \left (48 b^3+72 b^2 c x+6 b c^2 x^2-9 c^3 x^3\right )\right )+3 c^3 (-8 b B+3 A c) x^4 \text {arctanh}\left (\frac {\sqrt {b+c x}}{\sqrt {b}}\right )\right )}{192 b^{5/2} x^{9/2} \sqrt {b+c x}} \]

input
Integrate[((A + B*x)*(b*x + c*x^2)^(3/2))/x^(13/2),x]
 
output
-1/192*(Sqrt[x*(b + c*x)]*(Sqrt[b]*Sqrt[b + c*x]*(8*b*B*x*(8*b^2 + 14*b*c* 
x + 3*c^2*x^2) + A*(48*b^3 + 72*b^2*c*x + 6*b*c^2*x^2 - 9*c^3*x^3)) + 3*c^ 
3*(-8*b*B + 3*A*c)*x^4*ArcTanh[Sqrt[b + c*x]/Sqrt[b]]))/(b^(5/2)*x^(9/2)*S 
qrt[b + c*x])
 
3.3.12.3 Rubi [A] (verified)

Time = 0.31 (sec) , antiderivative size = 155, normalized size of antiderivative = 0.87, number of steps used = 7, number of rules used = 6, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.250, Rules used = {1220, 1130, 1130, 1135, 1136, 220}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {(A+B x) \left (b x+c x^2\right )^{3/2}}{x^{13/2}} \, dx\)

\(\Big \downarrow \) 1220

\(\displaystyle \frac {(8 b B-3 A c) \int \frac {\left (c x^2+b x\right )^{3/2}}{x^{11/2}}dx}{8 b}-\frac {A \left (b x+c x^2\right )^{5/2}}{4 b x^{13/2}}\)

\(\Big \downarrow \) 1130

\(\displaystyle \frac {(8 b B-3 A c) \left (\frac {1}{2} c \int \frac {\sqrt {c x^2+b x}}{x^{7/2}}dx-\frac {\left (b x+c x^2\right )^{3/2}}{3 x^{9/2}}\right )}{8 b}-\frac {A \left (b x+c x^2\right )^{5/2}}{4 b x^{13/2}}\)

\(\Big \downarrow \) 1130

\(\displaystyle \frac {(8 b B-3 A c) \left (\frac {1}{2} c \left (\frac {1}{4} c \int \frac {1}{x^{3/2} \sqrt {c x^2+b x}}dx-\frac {\sqrt {b x+c x^2}}{2 x^{5/2}}\right )-\frac {\left (b x+c x^2\right )^{3/2}}{3 x^{9/2}}\right )}{8 b}-\frac {A \left (b x+c x^2\right )^{5/2}}{4 b x^{13/2}}\)

\(\Big \downarrow \) 1135

\(\displaystyle \frac {(8 b B-3 A c) \left (\frac {1}{2} c \left (\frac {1}{4} c \left (-\frac {c \int \frac {1}{\sqrt {x} \sqrt {c x^2+b x}}dx}{2 b}-\frac {\sqrt {b x+c x^2}}{b x^{3/2}}\right )-\frac {\sqrt {b x+c x^2}}{2 x^{5/2}}\right )-\frac {\left (b x+c x^2\right )^{3/2}}{3 x^{9/2}}\right )}{8 b}-\frac {A \left (b x+c x^2\right )^{5/2}}{4 b x^{13/2}}\)

\(\Big \downarrow \) 1136

\(\displaystyle \frac {(8 b B-3 A c) \left (\frac {1}{2} c \left (\frac {1}{4} c \left (-\frac {c \int \frac {1}{\frac {c x^2+b x}{x}-b}d\frac {\sqrt {c x^2+b x}}{\sqrt {x}}}{b}-\frac {\sqrt {b x+c x^2}}{b x^{3/2}}\right )-\frac {\sqrt {b x+c x^2}}{2 x^{5/2}}\right )-\frac {\left (b x+c x^2\right )^{3/2}}{3 x^{9/2}}\right )}{8 b}-\frac {A \left (b x+c x^2\right )^{5/2}}{4 b x^{13/2}}\)

\(\Big \downarrow \) 220

\(\displaystyle \frac {(8 b B-3 A c) \left (\frac {1}{2} c \left (\frac {1}{4} c \left (\frac {c \text {arctanh}\left (\frac {\sqrt {b x+c x^2}}{\sqrt {b} \sqrt {x}}\right )}{b^{3/2}}-\frac {\sqrt {b x+c x^2}}{b x^{3/2}}\right )-\frac {\sqrt {b x+c x^2}}{2 x^{5/2}}\right )-\frac {\left (b x+c x^2\right )^{3/2}}{3 x^{9/2}}\right )}{8 b}-\frac {A \left (b x+c x^2\right )^{5/2}}{4 b x^{13/2}}\)

input
Int[((A + B*x)*(b*x + c*x^2)^(3/2))/x^(13/2),x]
 
output
-1/4*(A*(b*x + c*x^2)^(5/2))/(b*x^(13/2)) + ((8*b*B - 3*A*c)*(-1/3*(b*x + 
c*x^2)^(3/2)/x^(9/2) + (c*(-1/2*Sqrt[b*x + c*x^2]/x^(5/2) + (c*(-(Sqrt[b*x 
 + c*x^2]/(b*x^(3/2))) + (c*ArcTanh[Sqrt[b*x + c*x^2]/(Sqrt[b]*Sqrt[x])])/ 
b^(3/2)))/4))/2))/(8*b)
 

3.3.12.3.1 Defintions of rubi rules used

rule 220
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(-(Rt[-a, 2]*Rt[b, 2])^(- 
1))*ArcTanh[Rt[b, 2]*(x/Rt[-a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && 
 (LtQ[a, 0] || GtQ[b, 0])
 

rule 1130
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(d + e*x)^(m + 1)*((a + b*x + c*x^2)^p/(e*(m + p + 1))), x] 
- Simp[c*(p/(e^2*(m + p + 1)))   Int[(d + e*x)^(m + 2)*(a + b*x + c*x^2)^(p 
 - 1), x], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] 
 && GtQ[p, 0] && (LtQ[m, -2] || EqQ[m + 2*p + 1, 0]) && NeQ[m + p + 1, 0] & 
& IntegerQ[2*p]
 

rule 1135
Int[((d_.) + (e_.)*(x_))^(m_)*((a_.) + (b_.)*(x_) + (c_.)*(x_)^2)^(p_), x_S 
ymbol] :> Simp[(-e)*(d + e*x)^m*((a + b*x + c*x^2)^(p + 1)/((m + p + 1)*(2* 
c*d - b*e))), x] + Simp[c*((m + 2*p + 2)/((m + p + 1)*(2*c*d - b*e)))   Int 
[(d + e*x)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, p}, 
 x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && LtQ[m, 0] && NeQ[m + p + 1, 0] && I 
ntegerQ[2*p]
 

rule 1136
Int[1/(Sqrt[(d_.) + (e_.)*(x_)]*Sqrt[(a_.) + (b_.)*(x_) + (c_.)*(x_)^2]), x 
_Symbol] :> Simp[2*e   Subst[Int[1/(2*c*d - b*e + e^2*x^2), x], x, Sqrt[a + 
 b*x + c*x^2]/Sqrt[d + e*x]], x] /; FreeQ[{a, b, c, d, e}, x] && EqQ[c*d^2 
- b*d*e + a*e^2, 0]
 

rule 1220
Int[((d_.) + (e_.)*(x_))^(m_)*((f_.) + (g_.)*(x_))*((a_.) + (b_.)*(x_) + (c 
_.)*(x_)^2)^(p_), x_Symbol] :> Simp[(d*g - e*f)*(d + e*x)^m*((a + b*x + c*x 
^2)^(p + 1)/((2*c*d - b*e)*(m + p + 1))), x] + Simp[(m*(g*(c*d - b*e) + c*e 
*f) + e*(p + 1)*(2*c*f - b*g))/(e*(2*c*d - b*e)*(m + p + 1))   Int[(d + e*x 
)^(m + 1)*(a + b*x + c*x^2)^p, x], x] /; FreeQ[{a, b, c, d, e, f, g, m, p}, 
 x] && EqQ[c*d^2 - b*d*e + a*e^2, 0] && ((LtQ[m, -1] &&  !IGtQ[m + p + 1, 0 
]) || (LtQ[m, 0] && LtQ[p, -1]) || EqQ[m + 2*p + 2, 0]) && NeQ[m + p + 1, 0 
]
 
3.3.12.4 Maple [A] (verified)

Time = 0.07 (sec) , antiderivative size = 133, normalized size of antiderivative = 0.74

method result size
risch \(-\frac {\left (c x +b \right ) \left (-9 A \,c^{3} x^{3}+24 B b \,c^{2} x^{3}+6 A b \,c^{2} x^{2}+112 B \,b^{2} c \,x^{2}+72 A \,b^{2} c x +64 B \,b^{3} x +48 A \,b^{3}\right )}{192 x^{\frac {7}{2}} b^{2} \sqrt {x \left (c x +b \right )}}-\frac {c^{3} \left (3 A c -8 B b \right ) \operatorname {arctanh}\left (\frac {\sqrt {c x +b}}{\sqrt {b}}\right ) \sqrt {c x +b}\, \sqrt {x}}{64 b^{\frac {5}{2}} \sqrt {x \left (c x +b \right )}}\) \(133\)
default \(-\frac {\sqrt {x \left (c x +b \right )}\, \left (9 A \,\operatorname {arctanh}\left (\frac {\sqrt {c x +b}}{\sqrt {b}}\right ) c^{4} x^{4}-24 B \,\operatorname {arctanh}\left (\frac {\sqrt {c x +b}}{\sqrt {b}}\right ) b \,c^{3} x^{4}-9 A \,c^{3} x^{3} \sqrt {c x +b}\, \sqrt {b}+24 B \,b^{\frac {3}{2}} c^{2} x^{3} \sqrt {c x +b}+6 A \,b^{\frac {3}{2}} c^{2} x^{2} \sqrt {c x +b}+112 B \,b^{\frac {5}{2}} c \,x^{2} \sqrt {c x +b}+72 A \,b^{\frac {5}{2}} c x \sqrt {c x +b}+64 B \,b^{\frac {7}{2}} x \sqrt {c x +b}+48 A \,b^{\frac {7}{2}} \sqrt {c x +b}\right )}{192 b^{\frac {5}{2}} x^{\frac {9}{2}} \sqrt {c x +b}}\) \(185\)

input
int((B*x+A)*(c*x^2+b*x)^(3/2)/x^(13/2),x,method=_RETURNVERBOSE)
 
output
-1/192*(c*x+b)*(-9*A*c^3*x^3+24*B*b*c^2*x^3+6*A*b*c^2*x^2+112*B*b^2*c*x^2+ 
72*A*b^2*c*x+64*B*b^3*x+48*A*b^3)/x^(7/2)/b^2/(x*(c*x+b))^(1/2)-1/64*c^3*( 
3*A*c-8*B*b)/b^(5/2)*arctanh((c*x+b)^(1/2)/b^(1/2))*(c*x+b)^(1/2)*x^(1/2)/ 
(x*(c*x+b))^(1/2)
 
3.3.12.5 Fricas [A] (verification not implemented)

Time = 0.28 (sec) , antiderivative size = 288, normalized size of antiderivative = 1.61 \[ \int \frac {(A+B x) \left (b x+c x^2\right )^{3/2}}{x^{13/2}} \, dx=\left [-\frac {3 \, {\left (8 \, B b c^{3} - 3 \, A c^{4}\right )} \sqrt {b} x^{5} \log \left (-\frac {c x^{2} + 2 \, b x - 2 \, \sqrt {c x^{2} + b x} \sqrt {b} \sqrt {x}}{x^{2}}\right ) + 2 \, {\left (48 \, A b^{4} + 3 \, {\left (8 \, B b^{2} c^{2} - 3 \, A b c^{3}\right )} x^{3} + 2 \, {\left (56 \, B b^{3} c + 3 \, A b^{2} c^{2}\right )} x^{2} + 8 \, {\left (8 \, B b^{4} + 9 \, A b^{3} c\right )} x\right )} \sqrt {c x^{2} + b x} \sqrt {x}}{384 \, b^{3} x^{5}}, -\frac {3 \, {\left (8 \, B b c^{3} - 3 \, A c^{4}\right )} \sqrt {-b} x^{5} \arctan \left (\frac {\sqrt {-b} \sqrt {x}}{\sqrt {c x^{2} + b x}}\right ) + {\left (48 \, A b^{4} + 3 \, {\left (8 \, B b^{2} c^{2} - 3 \, A b c^{3}\right )} x^{3} + 2 \, {\left (56 \, B b^{3} c + 3 \, A b^{2} c^{2}\right )} x^{2} + 8 \, {\left (8 \, B b^{4} + 9 \, A b^{3} c\right )} x\right )} \sqrt {c x^{2} + b x} \sqrt {x}}{192 \, b^{3} x^{5}}\right ] \]

input
integrate((B*x+A)*(c*x^2+b*x)^(3/2)/x^(13/2),x, algorithm="fricas")
 
output
[-1/384*(3*(8*B*b*c^3 - 3*A*c^4)*sqrt(b)*x^5*log(-(c*x^2 + 2*b*x - 2*sqrt( 
c*x^2 + b*x)*sqrt(b)*sqrt(x))/x^2) + 2*(48*A*b^4 + 3*(8*B*b^2*c^2 - 3*A*b* 
c^3)*x^3 + 2*(56*B*b^3*c + 3*A*b^2*c^2)*x^2 + 8*(8*B*b^4 + 9*A*b^3*c)*x)*s 
qrt(c*x^2 + b*x)*sqrt(x))/(b^3*x^5), -1/192*(3*(8*B*b*c^3 - 3*A*c^4)*sqrt( 
-b)*x^5*arctan(sqrt(-b)*sqrt(x)/sqrt(c*x^2 + b*x)) + (48*A*b^4 + 3*(8*B*b^ 
2*c^2 - 3*A*b*c^3)*x^3 + 2*(56*B*b^3*c + 3*A*b^2*c^2)*x^2 + 8*(8*B*b^4 + 9 
*A*b^3*c)*x)*sqrt(c*x^2 + b*x)*sqrt(x))/(b^3*x^5)]
 
3.3.12.6 Sympy [F]

\[ \int \frac {(A+B x) \left (b x+c x^2\right )^{3/2}}{x^{13/2}} \, dx=\int \frac {\left (x \left (b + c x\right )\right )^{\frac {3}{2}} \left (A + B x\right )}{x^{\frac {13}{2}}}\, dx \]

input
integrate((B*x+A)*(c*x**2+b*x)**(3/2)/x**(13/2),x)
 
output
Integral((x*(b + c*x))**(3/2)*(A + B*x)/x**(13/2), x)
 
3.3.12.7 Maxima [F]

\[ \int \frac {(A+B x) \left (b x+c x^2\right )^{3/2}}{x^{13/2}} \, dx=\int { \frac {{\left (c x^{2} + b x\right )}^{\frac {3}{2}} {\left (B x + A\right )}}{x^{\frac {13}{2}}} \,d x } \]

input
integrate((B*x+A)*(c*x^2+b*x)^(3/2)/x^(13/2),x, algorithm="maxima")
 
output
integrate((c*x^2 + b*x)^(3/2)*(B*x + A)/x^(13/2), x)
 
3.3.12.8 Giac [A] (verification not implemented)

Time = 0.34 (sec) , antiderivative size = 176, normalized size of antiderivative = 0.98 \[ \int \frac {(A+B x) \left (b x+c x^2\right )^{3/2}}{x^{13/2}} \, dx=-\frac {\frac {3 \, {\left (8 \, B b c^{4} - 3 \, A c^{5}\right )} \arctan \left (\frac {\sqrt {c x + b}}{\sqrt {-b}}\right )}{\sqrt {-b} b^{2}} + \frac {24 \, {\left (c x + b\right )}^{\frac {7}{2}} B b c^{4} + 40 \, {\left (c x + b\right )}^{\frac {5}{2}} B b^{2} c^{4} - 88 \, {\left (c x + b\right )}^{\frac {3}{2}} B b^{3} c^{4} + 24 \, \sqrt {c x + b} B b^{4} c^{4} - 9 \, {\left (c x + b\right )}^{\frac {7}{2}} A c^{5} + 33 \, {\left (c x + b\right )}^{\frac {5}{2}} A b c^{5} + 33 \, {\left (c x + b\right )}^{\frac {3}{2}} A b^{2} c^{5} - 9 \, \sqrt {c x + b} A b^{3} c^{5}}{b^{2} c^{4} x^{4}}}{192 \, c} \]

input
integrate((B*x+A)*(c*x^2+b*x)^(3/2)/x^(13/2),x, algorithm="giac")
 
output
-1/192*(3*(8*B*b*c^4 - 3*A*c^5)*arctan(sqrt(c*x + b)/sqrt(-b))/(sqrt(-b)*b 
^2) + (24*(c*x + b)^(7/2)*B*b*c^4 + 40*(c*x + b)^(5/2)*B*b^2*c^4 - 88*(c*x 
 + b)^(3/2)*B*b^3*c^4 + 24*sqrt(c*x + b)*B*b^4*c^4 - 9*(c*x + b)^(7/2)*A*c 
^5 + 33*(c*x + b)^(5/2)*A*b*c^5 + 33*(c*x + b)^(3/2)*A*b^2*c^5 - 9*sqrt(c* 
x + b)*A*b^3*c^5)/(b^2*c^4*x^4))/c
 
3.3.12.9 Mupad [F(-1)]

Timed out. \[ \int \frac {(A+B x) \left (b x+c x^2\right )^{3/2}}{x^{13/2}} \, dx=\int \frac {{\left (c\,x^2+b\,x\right )}^{3/2}\,\left (A+B\,x\right )}{x^{13/2}} \,d x \]

input
int(((b*x + c*x^2)^(3/2)*(A + B*x))/x^(13/2),x)
 
output
int(((b*x + c*x^2)^(3/2)*(A + B*x))/x^(13/2), x)